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Gradient Descent

1 By far the most common way to train neural networks
2 DL libraries provide various ways of implementing Gradient Descent
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Recap the Loss in Logistic Regression

1

L(w,b) = −
∑

n

log(σ(yn(wxn + b)))

2 We computed the loss over all the training data and then computed
the gradient

3 This is vanilla or Batch Gradient Descent
4 Sometimes very slow and intractable (datasets that do not fit in the

memory)
5 It doesn’t allow updating the model online (i.e., with the arrival of

new data samples, on the fly)
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Batch Gradient Descent
for i in range(nb_epochs):

params_grad = evaluategradient(lossfunction, data, params)
params = params - learning_rate ∗ params_grad

1 Batch GS is guaranteed to converge to global minima in case of
convex functions, and to a local minima in case of non-convex
functions
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Stochastic Gradient Descent (SGD)

1 Performs updates parameters for each training example
w = w − η∇wL(w, xi, yi)

2 In case of large datasets, Batch GD computes redundant gradients for
similar examples for each parameter update

3 SGD does away with redundancy and generally faster and can be used
to learn online
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Stochastic Gradient Descent (SGD)

1 However, frequent updates with a high variance cause the objective
function to fluctuate heavily

Figure credits: Wikipedia
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Stochastic Gradient Descent (SGD)

1 SGD’s fluctuations enable it to jump to new and potentially better
local minima

2 This complicates the convergence, as it overshoots
3 However, if the learning rate is slowly decreased, we can show similar

convergence to Batch GD
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Stochastic Gradient Descent (SGD)

for i in range(nb_epochs):
np.random.shuffle(data)
for example in data:

params_grad = evaluate_gradient(loss_function,
example, params)

params = params - learning_rate * params_grad
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Mini-batch Gradient Descent

1 Takes the best of both worlds, updates the parameters for every
mini-batch of n samples
w = w − η∇wL(w, xi:i+n, yi:i+n)

2 Reduces the variance of the parameter updates, which can lead to more
stable convergence
Can make use of highly optimized matrix optimizations

3 Common mini-batch sizes vary from 50 to 1024, depending on the
application

4 This is the algorithm of choice while training DNNs (also, incorrectly
referred to as SGD in general)
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Mini-batch Gradient Descent
for i in range(nb_epochs):

np.random.shuffle(data)
for batch in get_batches(data, batch_size = 50):

params_grad = evaluate_gradient(loss_function, batch,
params)

params = params - learning_rate * params_grad
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Some challenges

1 Choosing a proper learning rate

Learning rate schedules try to adjust it during the training
However, these schedules are defined in advance and hence unable to
adapt to the task at hand

2 Same learning rate applies to all the parameters
3 Avoiding numerous sub-optimal local minima
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Different update versions in GD

To deal with the discussed challenges, researchers proposed variety of
update equations for GD

SGD with momentum
Nesterov Accelerated Gradient
AdaGrad
Adadelta
Adam
RMSProp
etc.
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SGD with momentum

1 SGD has trouble when navigating through ravines (areas where the
loss surface curves sharply in one direction than other; common near
local optima)

2 SGD progresses slowly; oscillating in the ravine
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SGD with momentum

1 Momentum is a method that helps to accelerate in the relevant
direction and dampens the oscillations

2 Adds a fraction γ of the previous update vector to the current one

vt =γvt−1 + η∇wL(w)
w =w − vt

3 γ is usually set to 0.9
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SGD with momentum

vt =γvt−1 + η∇wL(w)
w =w − vt

1 Momentum term
Increases the update for the components whose gradient points in the
same direction
Decreases for the dimensions whose gradient change direction across
iterations
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