

Deep Learning

3.5 More on Gradient Descent

Dr. Konda Reddy Mopuri kmopuri@iittp.ac.in Dept. of CSE, IIT Tirupati

Gradient Descent

- ¹ By far the most common way to train neural networks
- ² DL libraries provide various ways of implementing Gradient Descent

$$
\mathcal{L}(\mathbf{w}, \mathbf{b}) = -\sum_{n} \log(\sigma(y_n(\mathbf{wx_n} + \mathbf{b})))
$$

 $\bf 0$

 $\bf{0}$

$$
\mathcal{L}(\mathbf{w}, \mathbf{b}) = -\sum_{n} \log(\sigma(y_n(\mathbf{wx_n} + \mathbf{b})))
$$

² We computed the loss over all the training data and then computed the gradient

 $\bf{0}$

$$
\mathcal{L}(\mathbf{w}, \mathbf{b}) = -\sum_{n} \log(\sigma(y_n(\mathbf{wx_n} + \mathbf{b})))
$$

- ² We computed the loss over all the training data and then computed the gradient
- ³ This is vanilla or Batch Gradient Descent

 $^{\circ}$

$$
\mathcal{L}(\mathbf{w}, \mathbf{b}) = -\sum_{n} \log(\sigma(y_n(\mathbf{wx_n} + \mathbf{b})))
$$

- ² We computed the loss over all the training data and then computed the gradient
- ³ This is vanilla or Batch Gradient Descent
- ⁴ Sometimes very slow and intractable (datasets that do not fit in the memory)

 $^{\circ}$

$$
\mathcal{L}(\mathbf{w}, \mathbf{b}) = -\sum_{n} \log(\sigma(y_n(\mathbf{wx_n} + \mathbf{b})))
$$

- ² We computed the loss over all the training data and then computed the gradient
- ³ This is vanilla or Batch Gradient Descent
- ⁴ Sometimes very slow and intractable (datasets that do not fit in the memory)
- ⁵ It doesn't allow updating the model online (i.e., with the arrival of new data samples, on the fly)

Batch Gradient Descent


```
for i in range(nb epochs):
  params_grad = evaluategradient(lossfunction, data, params)
  params = params - learning_rate ∗ params_grad
```
Batch Gradient Descent


```
for i in range(nb epochs):
  params_grad = evaluategradient(lossfunction, data, params)
  params = params - learning_rate ∗ params_grad
```
¹ Batch GS is guaranteed to converge to global minima in case of convex functions, and to a local minima in case of non-convex functions

¹ Performs updates parameters for each training example $w = w - \eta \nabla_w \mathcal{L}(w, x^i, y^i)$

- ¹ Performs updates parameters for each training example $w = w - \eta \nabla_w \mathcal{L}(w, x^i, y^i)$
- ² In case of large datasets, Batch GD computes redundant gradients for similar examples for each parameter update

- ¹ Performs updates parameters for each training example $w = w - \eta \nabla_w \mathcal{L}(w, x^i, y^i)$
- ² In case of large datasets, Batch GD computes redundant gradients for similar examples for each parameter update
- ³ SGD does away with redundancy and generally faster and can be used to learn online

¹ However, frequent updates with a high variance cause the objective function to fluctuate heavily

Figure credits: Wikipedia

¹ SGD's fluctuations enable it to jump to new and potentially better local minima

- ¹ SGD's fluctuations enable it to jump to new and potentially better local minima
- ² This complicates the convergence, as it overshoots

- ¹ SGD's fluctuations enable it to jump to new and potentially better local minima
- ² This complicates the convergence, as it overshoots
- ³ However, if the learning rate is slowly decreased, we can show similar convergence to Batch GD


```
for i in range(nb_epochs):
  np.random.shuffle(data)
  for example in data:
    params qrad = evaluate gradient(loss function,example, params)
    params = params - learning rate * params grad
```


¹ Takes the best of both worlds, updates the parameters for every mini-batch of n samples

 $w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$

¹ Takes the best of both worlds, updates the parameters for every mini-batch of n samples

 $w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})$

- 2 Reduces the variance of the parameter updates, which can lead to more stable convergence
	- Can make use of highly optimized matrix optimizations

¹ Takes the best of both worlds, updates the parameters for every mini-batch of n samples

$$
w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})
$$

- 2 Reduces the variance of the parameter updates, which can lead to more stable convergence
	- Can make use of highly optimized matrix optimizations
- ³ Common mini-batch sizes vary from 50 to 1024, depending on the application

¹ Takes the best of both worlds, updates the parameters for every mini-batch of n samples

$$
w = w - \eta \nabla_w \mathcal{L}(w, x^{i:i+n}, y^{i:i+n})
$$

- 2 Reduces the variance of the parameter updates, which can lead to more stable convergence
	- Can make use of highly optimized matrix optimizations
- ³ Common mini-batch sizes vary from 50 to 1024, depending on the application
- ⁴ This is the algorithm of choice while training DNNs (also, incorrectly referred to as SGD in general)

```
for i in range(nb epochs):
  np.random.shuffle(data)
  for batch in get_batches(data, batch_size = 50):
    params_grad = evaluate_gradient(loss_function, batch,
params)
```

```
params = params - learning_rate * params_grad
```


1 Choosing a proper learning rate

Learning rate schedules try to adjust it during the training

- Learning rate schedules try to adjust it during the training
- However, these schedules are defined in advance and hence unable to adapt to the task at hand

- Learning rate schedules try to adjust it during the training
- However, these schedules are defined in advance and hence unable to adapt to the task at hand
- ² Same learning rate applies to all the parameters

- Learning rate schedules try to adjust it during the training
- However, these schedules are defined in advance and hence unable to adapt to the task at hand
- ² Same learning rate applies to all the parameters
- ³ Avoiding numerous sub-optimal local minima

Different update versions in GD

To deal with the discussed challenges, researchers proposed variety of update equations for GD

- SGD with momentum
- Nesterov Accelerated Gradient
- AdaGrad
- Adadelta
- Adam
- RMSProp
- etc.

¹ SGD has trouble when navigating through ravines (areas where the loss surface curves sharply in one direction than other; common near local optima)

- ¹ SGD has trouble when navigating through ravines (areas where the loss surface curves sharply in one direction than other; common near local optima)
- ² SGD progresses slowly; oscillating in the ravine

¹ Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations

- ¹ Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations
- ² Adds a fraction *γ* of the previous update vector to the current one

$$
v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)
$$

$$
w = w - v_t
$$

- ¹ Momentum is a method that helps to accelerate in the relevant direction and dampens the oscillations
- ² Adds a fraction *γ* of the previous update vector to the current one

$$
v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)
$$

$$
w = w - v_t
$$

3 γ is usually set to 0.9

$$
v_t = \gamma v_{t-1} + \eta \nabla_w \mathcal{L}(w)
$$

$$
w = w - v_t
$$

- ¹ Momentum term
	- Increases the update for the components whose gradient points in the same direction
	- Decreases for the dimensions whose gradient change direction across iterations

References

<https://ruder.io/optimizing-gradient-descent/>